Two Examples of Non Strictly Convex Large Deviations
نویسندگان
چکیده
منابع مشابه
Minimum Strictly Convex Quadrangulations of Convex
We present a linear{time algorithm that decomposes a convex polygon conformally into a minimum number of strictly convex quadrilaterals. Moreover, we characterize the polygons that can be decomposed without additional vertices inside the polygon, and we present a linear{time algorithm for such decompositions, too. As an application , we consider the problem of constructing a minimum conformal r...
متن کاملLarge Deviations in the Geometry of Convex Lattice Polygons
We provide a full large deviation principle (LDP) for the uniform measure on certain ensembles of convex lattice polygons. This LDP provides for the analysis of concentration of the measure on convex closed curves. In particular, convergence to a limiting shape results in some particular cases, including convergence to a circle when the ensemble is deened as those centered convex polygons, with...
متن کاملCores of convex and strictly convex games
We follow the path initiated in Shapley (1971) and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal’s triangle. JEL classification: C71.
متن کاملDynamics of non-expansive maps on strictly convex Banach spaces
This paper concerns the dynamics of non-expansive maps on strictly convex finite dimensional normed spaces. By using results of Edelstein and Lyubich, we show that if X = (R, ‖ · ‖) is strictly convex and X has no 1-complemented Euclidean plane, then every bounded orbit of a non-expansive map f : X → X , converges to a periodic orbit. By putting extra assumptions on the derivatives of the norm,...
متن کاملLarge Deviations for Minkowski Sums of Heavy-tailed Generally Non-convex Random Compact Sets
We prove large deviation results for Minkowski sums of iid random compact sets where we assume that the summands have a regularly varying distribution. The result confirms the heavy-tailed large deviation heuristics: “large” values of the sum are essentially due to the “largest” summand.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2014
ISSN: 1556-5068
DOI: 10.2139/ssrn.2531003